CINEOLIC ACID DERIVATIVES: REGIOSELECTIVE SYNTHESIS, NMR AND MS STUDIES

Armando J. D. Silvestre,^a José A. S. Cavaleiro,^{*a} Artur M. S. Silva,^a Bernard Delmond^b and Claude Filliatre^b

^a Department of Chemistry, University of Aveiro, 3810 Aveiro, Portugal, ^b Institut du Pin, Université de Bordeaux I, 351 Cours de la Libération, 33405 Talence, France

Abstract

The synthesis of several derivatives of cineolic acid is reported. Based on NMR and MS studies the regioselectivity of some reactions is demonstrated.

INTRODUCTION

Cineolic acid, (2,2,6-trimethyltetrahydropyran-3,6-dicarboxylic acid) **2**, can be obtained by oxidation of **1**,8-cineole **1** with potassium permanganate in alkaline aqueous solution (1). This acid can be converted into cineolic anhydride **3** by its heating in acetic anhydride. The transformation of **3** into the monomethyl ester **4** has been considered to be regioselective, although no spectroscopic evidence was put forward (2).

As part of a program aiming to obtain new products from cheap and abundant natural compounds, the synthesis of several new derivatives of cineolic acid <u>2</u> has been undertaken; based on NMR and MS studies, it has also been possible to demonstrate unequivocally the regioselectivity of the reactions involved.

RESULTS AND DISCUSSION

Reaction of 3 with *p*-anisidine or phenol gave, respectively, the amide 5 or the ester 6. The 3-carboxanilide 7 was synthesised from acid 4 with *p*-anisidine, using dicyclohexylcarbodiimide (DCC) and catalytic amounts of 4-pyrrolidinopyridine (PPy) (3,4). Products 5, 6 and 7 were purified by thin layer chromatography on silica gel eluting with mixtures of ethyl acetate:petroleum ether, and crystallised from petroleum ether:dichloromethane.

Scheme 1

The products obtained were characterised by ¹H and ¹³C NMR, HETCOR (¹H/¹³C), DEPT, INEPT, HMBC (in the case of compounds <u>2</u> and <u>7</u>) and also by e.i.-MS. Carbon resonance assignments of the carboxylic acid groups of compound <u>2</u> were based on the proton-coupled ¹³C NMR spectra: signal at δ 175.9 ppm is due to the 3-COOH carbon atom resonance and appears as a doublet (²J_{CH} 6.9 Hz), due to the coupling with H₃. At δ 178.2 ppm a double quartet (³J_{CH} 7.9 Hz, ³J_{CH} 3.4 Hz) is assigned to the 6-COOH carbon resonance, which couples with 6-CH₃ and H-5 *equatorial* protons. These assignments were made in an unequivocal way, using HMBC experiments (5). Correlation due to long-range couplings was found between H-3 proton and the carbon atom resonances at δ 75.4 and 175.9 ppm. The first signal was then attributed to the resonance of C-2 carbon atom, and the second one to 3-CO in agreement with our previous

A.J.D. Silveste, J.A.S. Cavaleiro, A.M.S. Silva, B. Delmond and C. Filiatre

assignment. It was also possible to found the connectivity between the resonance of the $6-CH_3$ protons and the signals at δ 32.5, 74.6 and 178.2 ppm. These resonances are due respectively to C-5, C-6 and 6-CO carbon atoms.

The assignments of the 6-QO and 3-CO carbon resonances became the key to confirm the regioselective synthesis of compounds 4-6 (6): for these, due to their functionalizations, shifts to lower frequencies (-1.5 to -3.2 ppm) in the carbon resonances of the 6-CO-substituents were observed, while 3-COOH remained as free carboxylic acid groups. For these groups the doublet resonances of the carbon atoms are not significantly affected (+0.1 to -0.2 ppm). Regioselectivity was also confirmed by one-dimensional selective INEPT measurements (7). These give the connectivity of a selected proton, by irradiation of the corresponding resonance, to the carbon atoms to which it is coupled and can be optimized for different long-range J (C/H) coupling. In the case of compound 4, on irradiation of the methoxyl proton resonance optimised for 7 Hz long-range J (C/H) coupling, enhancement of the signal at δ 176.7 ppm was observed; this signal was then assigned to the 6-CO carbon resonance. Similarly, on irradiation of the NH proton resonance of compound 5, enhancements of the signals at δ 175.0 and 122.8 ppm were observed; the former signal was attributed to the resonance of 6-CO carbon, and the latter to the C-2',6' carbon atom resonances.

With compound $\underline{7}$, due to the 3-amide and 6-ester functionalizations, it was possible to assign the 3- $\underline{C}O$ and 6-CO carbon atom resonances: on irradiation of both the methoxyl groups' resonances the enhancements of the signals at δ 176.8 and 156.4 ppm were observed; these signals were attributed to 6- $\underline{C}O$ and C-4' carbon resonances. On irradiation of the NH proton resonance, enhancements on the signals at δ 172.3 and 122.6 ppm were observed, and such signals were attributed to 3-CO and C-2',6' carbon resonances.

The assignments of 3-CO and 6-CO carbon resonances of compound 7 were also confirmed using an HMBC experiment (5); the relevant connectivities are the following:

H-3	>	C-2, 2-CH ₃ and 3- <u>C</u> O C-6 and 6- <u>C</u> O		
H-5 _{eq}	>			
6-C <u>H</u> ₃	>	C-5, C-6 and 6-CO		
N-H	>	6-CO and C-2',6'		

For the diacid <u>2</u> the molecular ion, m/z 216, was not found in its mass spectrum, but there were two strong peaks at m/z 171 and m/z 153, corresponding to successive losses of CO_2H and

H₂O. In the mass spectra of compounds <u>4-6</u> similar intense peaks were also observed, suggesting that the first fragmentation corresponds to the loss of the 6-substituent, and the second fragmentation to the loss of a water molecule (Table 1). Finally, the fragmentation of <u>7</u> was characterised by a low intensity molecular ion at m/z 335, and strong peaks at m/z 276 and 153; in this way it is proposed that such peaks correspond to successive losses of groups COOCH₃ and $CH_3OC_6H_4NH_2$ being present in positions 6 and 3 respectively. Such MS fragmentation behaviour is then related with the substitution patterns of cineolic acid derivatives.

Compound	Mol. Ion	First Fragmentation		Second	Fragmentation
	m/z	m/z	loss of	m/z	loss of
2	-	171	CO ₂ H	153	H ₂ O
4	-	171	CO ₂ CH ₃	153	H ₂ O
5	321	171	[·] CONHC ₆ H₄OCH₃	153	H ₂ O
6	-	171	CO ₂ C ₆ H ₅	153	H ₂ O
7	335	276	CO ₂ CH ₃	153	CH ₃ OC ₆ H₄NH ₂

Table 1: Most Important Fragmentations of Compounds 2, 4-7.

ACKNOWLEDGEMENTS

Sincere thanks are due to JNICT, Lisbon, for a grant to purchase the Brucker AMX 300 NMR spectrometer. One of us (A.J.D.S.) is also gratefull to JNICT for the award of a student's grant (BD/803/90-RM).

REFERENCES AND NOTES

- 1. J. L. Simonsen, The Terpenes, University Press, Cambridge, Vol. I, 1947, pp. 422.
- 2. I. D. Rae and A. M. Rewood, Aust. J. Chem. 27, 1143 (1974).
- 3. D. Tanner and P. Somfai, Tetrahedron 44, 613 (1988).
- 4. D. Tanner and P. Somfai, Tetrahedron 44, 619 (1988).
- 5. The long-range couplings in the HMBC experiments were optimized for 10 Hz. In this communication it is only considered the relevant information for the assignments of the 3-CO and 6-CO carbon resonances.
- ¹³C NMR spectra were determined at 75 MHz, in DMSO-d₆. For compounds <u>4,5</u> and <u>6</u> the chemical shifts (δ, ppm from TMS) of 3-<u>C</u>O and 6-<u>C</u>O are the following: <u>4</u> 175.7 and 176.7; <u>5</u> 176.0 and 175.0; 6 175.5 and 175.0.
- 7. A. Bax, J. Magn. Reson. <u>57</u>, 314, (1984).

Received January 19, 1996