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Abstract 

The synthesis of several derivatives of cineolic acid is reported. Based on NMR and MS studies 

the regioselectivity of some reactions is demonstrated. 

INTRODUCTION 

Cineolic acid, (2,2,6-trimethyltetrahydropyran-3,6-dicarboxylic acid) 2, can be obtained by 

oxidation of 1,8-cineole 1 with potassium permanganate in alkaline aqueous solution (1). This 

acid can be converted into cineolic anhydride 3 by its heating in acetic anhydride. The 

transformation of 3 into the monomethyl ester 4 has been considered to be regioselective, 

although no spectroscopic evidence was put forward (2). 

As part of a program aiming to obtain new products from cheap and abundant natural 

compounds, the synthesis of several new derivatives of cineolic acid 2 has been undertaken; 

based on NMR and MS studies, it has also been possible to demonstrate unequivocally the 

regioselectivity of the reactions involved. 

RESULTS AND DISCUSSION 

Reaction of 3 with p-anisidine or phenol gave, respectively, the amide 5 or the ester 6. The 

3-carboxanilide 7 was synthesised from acid 4 with p-anisidine, using dicyclohexylcarbodiimide 

(DCC) and catalytic amounts of 4-pyrrolidinopyridine (PPy) (3,4). Products 5, 6 and 7 were 

purified by thin layer chromatography on silica gel eluting with mixtures of ethyl acetate:petroleum 

ether, and crystallised from petroleum ether:dichloromethane. 
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Scheme 1 

The products obtained were characterised by 1H and 13C NMR, HETCOR (1H/13C), DEPT, 

INEPT, HMBC (in the case of compounds 2 and 7) and also by e.i.-MS. Carbon resonance 

assignments of the carboxylic acid groups of compound 2 were based on the proton-coupled 13C 

NMR spectra: signal at δ 175.9 ppm is due to the 3-COOH carbon atom resonance and appears as 

a doublet (2JCH 6.9 Hz), due to the coupling with H3. At δ 178.2 ppm a double quartet (3JCH 7.9 Hz, 
3JCH 3.4 Hz) is assigned to the 6-COOH carbon resonance, which couples with 6-CH3 and H-5 

equatorial protons. These assignments were made in an unequivocal way, using HMBC 

experiments (5). Correlation due to long-range couplings was found between H-3 proton and the 

carbon atom resonances at δ 75.4 and 175.9 ppm. The first signal was then attributed to the 

resonance of C-2 carbon atom, and the second one to 3-CO in agreement with our previous 
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assignment. It was also possible to found the connectivity between the resonance of the 6-CH3 

protons and the signals at δ 32.5, 74.6 and 178.2 ppm. These resonances are due respectively to 

C-5, C-6 and 6-CO carbon atoms. 

The assignments of the 6-CO and 3-CO carbon resonances became the key to confirm the 

regioselective synthesis of compounds 4-6 (6): for these, due to their functionalizations, shifts to 

lower frequencies (-1.5 to -3.2 ppm) in the carbon resonances of the 6-CO-substituents were 

observed, while 3-COOH remained as free carboxylic acid groups. For these groups the doublet 

resonances of the carbon atoms are not significantly affected (+0.1 to -0.2 ppm). Regioselectivity 

was also confirmed by one-dimensional selective INEPT measurements (7). These give the 

connectivity of a selected proton, by irradiation of the corresponding resonance, to the carbon 

atoms to which it is coupled and can be optimized for different long-range J (C/H) coupling. In the 

case of compound 4, on irradiation of the methoxyl proton resonance optimised for 7 Hz long-

range J (C/H) coupling, enhancement of the signal at δ 176.7 ppm was observed; this signal was 

then assigned to the 6-CO carbon resonance. Similarly, on irradiation of the NH proton resonance 

of compound 5, enhancements of the signals at δ 175.0 and 122.8 ppm were observed; the former 

signal was attributed to the resonance of 6-CO carbon, and the latter to the C-2',6' carbon atom 

resonances. 

With compound 7, due to the 3-amide and 6-ester functionalizations, it was possible to 

assign the 3-QO and 6-CO carbon atom resonances: on irradiation of both the methoxyl groups' 

resonances the enhancements of the signals at δ 176.8 and 156.4 ppm were observed; these 

signals were attributed to 6-CO and C-4' carbon resonances. On irradiation of the NH proton 

resonance, enhancements on the signals at δ 172.3 and 122.6 ppm were observed, and such 

signals were attributed to 3-CO and C-2',6' carbon resonances. 

The assignments of 3-CO and 6-CO carbon resonances of compound 7 were also confirmed 

using an HMBC experiment (5); the relevant connectivities are the following: 

H-3 > C-2, 2-CH3 and 3-CO 

H-5eq > C-6 and 6-CO 

6-CH3 > C-5, C-6 and 6-CO 

N-H > 6-CO and C-2',6' 

For the diacid 2 the molecular ion, m/z 216, was not found in its mass spectrum, but there 

were two strong peaks at m/z 171 and m/z 153, corresponding to successive losses of CO2H and 
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H2O. In the mass spectra of compounds 4-6 similar intense peaks were also observed, suggesting 

that the first fragmentation corresponds to the loss of the 6-substituent, and the second 

fragmentation to the loss of a water molecule (Table 1). Finally, the fragmentation of 7 was 

characterised by a low intensity molecular ion at m/z 335, and strong peaks at m/z 276 and 153; in 

this way it is proposed that such peaks correspond to successive losses of groups COOCH3 and 

CH3OC6H4NH2 being present in positions 6 and 3 respectively. Such MS fragmentation behaviour 

is then related with the substitution patterns of cineolic acid derivatives. 

Table 1: Most Important Fragmentations of Compounds 2, 4-7. 

Compound Mol. Ion First Fragmentation Second Fragmentation Compound 

m/z m/z loss of m/z loss of 

2 - 171 CO2H 153 H20 

4 - 171 CO2CH3 153 H2O 

5 321 171 •CONHC6H4OCH3 153 H20 

6 - 171 CO2C6H5 153 H2O 

7 335 276 CO2CH3 153 CH3OC6H4NH2 
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